Case Study
Package Design &
SI/PI analysis

Caliber Interconnect Solutions (Pvt) Ltd
No 9 B/1, Poombukar Nagar,
Thudiyalur,
Coimbatore- 641034,
Tamil Nadu, India.
www.caliberinterconnect.com
Mission & Vision

Mission

“Provide dependable solutions to the satisfaction of the customers through intensive R&D and proven quality control procedures using disciplined workforce.”

Vision

“Developing and applying technological solutions to the benefits of the society that will not affect the safety and living standards of our future generations.”

Quality Policy

“CALIBER INTERCONNECT SOLUTIONS PRIVATE LIMITED is committed to meet and exceed customers expectations through timely delivery of cost effective quality designs through ever improving process and team work.”
Leading provider of high speed design and analysis services for
- Probe Cards
- System in Packages (SiP)
- Multi Layer Package Designs and Layouts
- Multi Chip Modules (MCMs)
- MLO/MLC Substrate Designs

Highly Skilled Design/Analysis and Layout Team
- More than 200+ package designs successfully completed
- Organic build up from 1-2-1 to 8-2-8 layers
- Low Cost 4 layer Laminates
- Multi layer Ceramic designs
- Experience in wirebond and flip chip design and layout techniques
- Chip Scale Package designs

Cost Effective and Timely Job completion
- Lead Time 1.5 weeks to 3 weeks from frozen netlist based on complexity
Design Flow

- Layout Setup
 - Cross section Definition
 - Die Generation
 - BGA generation
 - Constraint Setup
 - Flipchip
 - Wirebond
Design Flow

Flipchip
- Die and BGA Fanout
- Core area definition
- IO routing and Ball Assignment
- Power and GND Planes
- Degaussing & stitching via addition

Wirebond
- Bond Finger & Ring creation
- Wire bonding
- IO routing and Ball Assignment
- Power and GND Planes
- Plating tails addition

A
Design Flow

A

Check for connectivity

Adding Fiducials & Fab notes

Gerber generation

DFM Validation

Final files to customer
Design Examples
FC Sample Case-1

- **Die Pin Count**: 5043 die pins
- **Bump Pitch**: 180um
- **Package size**: 33x33 mm
- **BGA array**: 32x32 with 1 mm pitch
- **Key Design attributes**
 - 196 Ios with different interfaces like DDR, SerDes and LVDS
 - All the signals routed in 2 layers and SerDes Tx and RX signals routed in different layers
 - Solid GND plane provided as reference for SerDes & Power planes for LVDS and DDR signals
 - Stitching vias added for SerDes with equal spacing between vias from start to end of the routing
 - 2 critical power pins spread out equally in core area of the Die and fanout of core area was challenging and 0201 capacitors added in Die side for critical power
 - Length matching done as per the skew given
 - Layers used – 4-2-4 structure (BU-C-BU)
 - Lead Time – 2.5 weeks
FC Sample Case-1
FC Sample Case-2

✓ **Die Pin Count**: 3302 die pins

✓ **Bump Pitch**: 180um

✓ **Package size**: 45x45 mm

✓ **BGA array**: 44x44 with 1 mm pitch

✓ **Key Design attributes**

- 77 signals of 50 ohms, 85 differential pairs in HT section and 243 pairs in Analog section
- All the pairs are routed in 2 layers and maximum spacing maintained between the pairs to allow GND flow between the pairs
- Stitching vias added between the pairs with equal spacing from start to end of the routing
- For each power and GND balls in core area, maximum number of vias added to improve connection path between Die and BGA
- Differential pair P and N balls have given a common large oval void area to avoid sharp corners.
- HT signals are matched within 7ps tolerance
- Layers used – 4-2-4 structure (BU-C-BU) & Lead Time – 2 weeks
FC Sample Case-2
FC Sample Case-2

Power Layer

Company Confidential
FC Sample Case-3

- **Die Pin Count:** 1816 die pins
- **Bump Pitch:** 210 um
- **Package size:** 35x35 mm
- **BGA array:** 34x34 with 1 mm pitch

Key Design attributes

- Design has different interfaces like DDR, XUAI, RGMII, and PCIe
- TX and RX nets of XUAI and PCIe are routed in different layers
- DDR nets are routed as groups with 8 data bits and its strobe pair in the middle of each byte
- DDR signals are routed as byte with respect to their banks and length matched according to the skew requirements.
- XAUI, RGMII, and PCIe Section also matched as per their skew requirements
- All the signals are routed with tight spacing and enough shielding was provided for all diff pairs
- For each power and GND balls in core area, 6 micro vias added to improve PDN performance
- Layers used – 3-2-3 structure (BU-C-BU) & Lead Time – 2.5 weeks
FC Sample Case-3
FC Sample Case-4

✓ **Die Pin Count:** DIE1 - 2335 pins, DIE2 - 692

✓ **Bump Pitch:** DIE1- 400 um, DIE2 – 180um

✓ **Package size:** CBGA 25x25 mm

✓ **BGA array:** 24x24 with 1 mm pitch

✓ **Key Design attributes**

 - Multi chip flip chip design with 2 DIE in a single substrate
 - One die is analog & another is digital & connectivity achieved between 2 DIE using diff pairs
 - 192 differential pairs in digital section and 188 pairs in analog section
 - Design consists of XAUI and GPIO Section and they are routed per their routing specification.
 - Analog and digital power/GNDs are properly planned and plane pouring is done without interference of each other

 - Core area of Digital DIE have different powers and achieving connectivity was difficult task
 - Layers used – 12 layers and Lead Time – 3 weeks
FC Sample Case-4

Company Confidential

Company Confidential
FC Sample Case-5

✓ **Die Pin Count**: 1923 Die pins

✓ **Bump Pitch**: 169 um

✓ **Package size**: 21x21 mm

✓ **BGA array**: 25x25 with 0.8 mm pitch

✓ **Key Design attributes**

 ▪ Design has different interfaces like DDR3, GMII, PCIe, SPI, QSPI, USB

 ▪ Differential Pairs are routed such that the intra-pair skew is <=2ps.

 ▪ CLK signals surrounded by GND shielding traces and stitching vias.

 ▪ GND vias are present as near as possible to the end of each signal to provide return path.

 ▪ Differential traces and critical signal traces are not routed above or below degassing holes.

 ▪ Core power and GND vias are placed wherever possible underneath the die to minimize voltage drop.

 ▪ Core area fanout with different powers and achieving connectivity was difficult task.

 ▪ Layers used – 4 layers & Lead time-1.5 weeks
FC Sample Case-6

✓ **Die Pin Count:** 6355 Die pins

✓ **Bump Pitch:** 148 um

✓ **Package size:** 37.5x37.5 mm

✓ **BGA array:** 36x36 with 1.0 mm pitch

✓ **Key Design attributes**

 - Design has different interfaces like DDR3, I2C, PCIe, and few other high speed signals
 - 551 Ios and among them 294 are differential pair signals.
 - More than 2x spacing maintained between the signals outside of die area
 - All the high speed signals and differential pairs are routed with 3x spacing from other IOs.
 - Signals are routed carefully such that each group of signals are given its corresponding power as reference in the adjacent layer.
 - BGA fanout pattern was created in such a way to avoid sharp edges in the shapes
 - Layers used – 10 layers & Lead time - 2 weeks
FC Sample Case-6
 ✓ **Die Pin Count**: 689 die pins in 2 rows

 ✓ **Package size**: 31x31 mm

 ✓ **BGA array**: 1289 ball pins with 1 mm pitch

 ✓ **Key Design attributes**

 - 241 Ios with different interfaces like DDR, GPIO, I2C, SPI, USB and others
 - Differential pairs are routed with 5x spacing to other signals
 - GND shielding traces added on both sides of critical signals
 - Each group of signals is routed with its corresponding GND reference in GND layer
 - Power rings created for 4 powers and 2 GND.
 - Layers used – 4 layers
 - Lead Time – 1.5 weeks
WB Sample Case-1
WB Sample Case-2

- **Die Pin Count:** 292 die pins
- **Package size:** 27x27 mm
- **BGA array:** 484 pin perimeter matrix BGA with 1 mm pitch

Key Design attributes
- 316 Ios with different interfaces like DDR, GMII, MII, GPIO and other interfaces
- Routing done in any angle trace to reduce length and to increase space for routing all signals in Top layer
- TX and RX pairs are routed with their respective GND shielding traces on both sides of the pairs and the same GND is given as reference in immediate next layer
- Due to spacing constraints, 2nd row of bond finger is created for few signals and connected to nearest ball pin.

- Power ring created for 3 different powers and vias are connected to its power plane.
- Plating tails added for all nets
- Layers used – 4 layers and Lead Time – 2 weeks
WB Sample Case-2
Die Pin Count: 365 die pins

Package size: 21x21 mm

BGA array: 365 pin perimeter matrix HSBGA with 1 mm pitch

Key Design attributes

- 226 Ios with Analog, Digital and HDMI section and among them 4 are differential pairs in HDMI
- All the signals are routed in Top layer with its respective GND as reference
- Staggered Bond finger pattern created for signals and few power and GND pins
- 4 Power rings created for 5 powers and 3 GND nets.
- Sunray pattern added to core ground ring
- Plating tails added for all nets
- Fiducials placed as per requirement and connected to GND
- Layers used – 4 layers
- Lead Time – 2 weeks
WB Sample Case-3
WB Sample Case-3
PACKAGE SI & PI SIMULATION
SIMULATION CAPABILITIES

- **Pre-layout Analysis**
 - Define Specification & Stack-Up Verification
 - Length tolerance, Impedance, etc
 - Can model diffpair and SE signals separately for loss analysis
 - Can analyze crosstalk for different spacing

- **Post-layout Analysis**
 - S-parameter and TDR analysis
 - Reflection analysis and Xtalk
 - Eye diagram and BER calculation
 - RLC parasitic Calculation
 - Crosstalk Checking
 - BUS simulation for timing budget calculation
SIGNAL INTEGRITY CO-DESIGN

Minimize-cost & Maximize Performance
SERVICES

Signal Integrity
- Pre layout & Post layout
- Serial & parallel interface (DDR 2/3/4, gigabit-SERDES)
- Co-design (IC/package/board)
- IBIS/IBIS-AMI based system SI
- Crosstalk, channel loss, s-parameter, eye-diagram, timing analysis

Power Integrity
- DC Analysis (IR drop, voltage/current distribution, density plots)
- AC Analysis (PDN impedance analysis, target impedance optimization, Transient noise estimation)
- Decoupling cap analysis & optimization

EMI/EMC
- EMI Radiation
- EMI Susceptibility
- Compliances to various EMI standards during design phase

Simulation Tools
- Cadence Sigrity PowerDC, PowerSI, Optimize PI, Xtract IM
- Ansys HFSS, Siwave, Designer
- Agilent ADS
Flip chip design with 5043 die pins.

32x32 (1024 BGA pins) BGA array with 1 mm pitch.

Layers used: 4-2-4 structure (BU-C-BU) using high frequent dielectric materials like ABF-GX13 prepreg and E700GR core materials.

Copper material is used.

Critical power net – VDD : 1.5V , 5A

This design high frequency SERDES signals like

<table>
<thead>
<tr>
<th>Group</th>
<th>Net name</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SerDes</td>
<td>CPRI_SERDES_RXP0,CPRI_SERDES_RXN0</td>
<td>5.0688 GHZ</td>
</tr>
<tr>
<td>SerDes</td>
<td>CPRI_SERDES_RXP1,CPRI_SERDES_RXN1</td>
<td>5.0688 GHZ</td>
</tr>
<tr>
<td>SerDes</td>
<td>CPRI_SERDES_TXP0,CPRI_SERDES_TXN0</td>
<td>5.0688 GHZ</td>
</tr>
<tr>
<td>SerDes</td>
<td>CPRI_SERDES_TXP1,CPRI_SERDES_TXN1</td>
<td>5.0688 GHZ</td>
</tr>
</tbody>
</table>
PACKAGE DESIGN – CASE ANALYSIS

S-Parameter Analysis for 5.06 GHz SERDES channel

HFSS 3Dmodel & Insertion Loss
PACKAGE DESIGN – CASE ANALYSIS

S-Parameter Analysis for 5.06 GHz SERDES channel

HFSS 3D model & Return Loss
• 10 Layers Package design. 3302 DIE pins & 1935 BGA pins
• Insertion & Return loss calculation up to 10GHz using ANSYS Siwave tool.
RLC Extraction & IBIS pin model

- 2354 DIE pins & 400 BGApins.
- Extracting Net based RLC values.
- Pin model with RLC values for the IBIS model.
- Tool used XTRACTPI
POWER INTEGRITY ANALYSIS

- **IR drop analysis** – to find voltage drop for plane and pins and to find the hot spot areas

- **Power/GND Impedance profile analysis** – The target impedance is useful for sizing the amount of capacitance necessary at each level of assembly to store sufficient charge and energy for the load.

- **De-coupling Capacitors Estimation and Optimization** – It is necessary to analyze and optimize the exact number and values of capacitors needed in order to achieve the desired PDN

- **Power Plane RLC** – Proper control in the plane RLC value gives good power impedance with less IR drop.
3.2 DC Analysis Block Diagram Result

<table>
<thead>
<tr>
<th>Vnom</th>
<th>Die</th>
<th>VDD</th>
<th>I = 5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA</td>
<td></td>
<td></td>
<td>1.2 V</td>
</tr>
<tr>
<td>Vout = 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WorstΔV = 1.1mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvgΔV = 0.5mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Voltage(V)</td>
<td>1.198</td>
<td>1.199</td>
<td>5</td>
</tr>
<tr>
<td>Voltage(V) referring to VRM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current(A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR Drop Simulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass/Fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vnom</th>
<th>Die</th>
<th>VDDA</th>
<th>I = 5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA</td>
<td></td>
<td></td>
<td>1.2 V</td>
</tr>
<tr>
<td>Vout = 1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WorstΔV = 0.4mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvgΔV = 4.1mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Voltage(V)</td>
<td>1.194</td>
<td>1.194</td>
<td>5</td>
</tr>
<tr>
<td>Voltage(V) referring to VRM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current(A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR Drop Simulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass/Fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vnom</th>
<th>Die</th>
<th>VDDHT</th>
<th>I = 2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGA</td>
<td></td>
<td>VSSHT</td>
<td>1.0 V</td>
</tr>
<tr>
<td>Vout = 1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSS</td>
<td>SSHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WorstΔV = 6.0mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AvgΔV = 4.9mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Voltage(V)</td>
<td>0.994</td>
<td>0.994</td>
<td>2</td>
</tr>
<tr>
<td>Voltage(V) referring to VRM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current(A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR Drop Simulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass/Fail</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
----- IRdrop on net is calculated on Power net only.
----- If a net has current flow from different sources, IRdrop is displayed with the largest IRdrop.
PACKAGE DESIGN – CASE ANALYSIS

Voltage distribution of VDD, VDDA & VDDHT Powernets
Current density of VDD, VDDA & VDDHT Power nets
Z11 analysis for VDD power net

Y = 0.002 (Ohm)

Frequency (GHz) vs. Z Amplitude (Ohm)
• 10 Layers Package design. 2550 DIE pins & 1088 BGA pins.
• Finding the optimized Decap scheme for obtaining the least impedance of a power net.
• Simulated using the PiAdvisor option in the ANSYS Siwavetools
Global Presence

INDIA

Coimbatore
9 B/1, Poombukar Nagar
Thudiyalur,
Coimbatore -641034,
Tamilnadu, India.
Fax: +91 422 4978557
Phone : +91 422 4978557

Bengaluru
451, 17th Main,
17th Cross, Sector – 4,
HSR Layout,
Bengaluru - 560102,
Karnataka, India
Phone : +91 08049792244

SINGAPORE

Caliber Interconnects Pte Ltd
No. 18 Boon Lay Way,
#09-127 (C),
TradeHub 21,
Singapore 609966.
Phone: +65 8661 7282

JAPAN

Mr. Yoshiaki Kurisu,
2-1-30 Fujimidai, Kunitachi-shi,
Tokyo, Japan 186-0003
Phone: +81 090 8580 4650

USA

24230, English Rose PI,
Valencia, CA 91354 California,
USA
Phone: +1 (510) 378-6927

ISRAEL

Hamarpe 3 st. Har Hotzvim,
Jerusalem 45008,
Israel
Phone: +972 52-955-2406
Thank You

Contact us
sales@caliberinterconnect.com

Visit us at
www.caliberinterconnect.com